Chapter 7

Numerical Investigation of Waring’s Problem

In this chapter, we shift the emphasis away from trying to find the shortest possible representation when we restrict to mth powers and towards finding the longest required to represent all integers, i.e. Waring’s Problem.

Lagrange proved that every positive integer can be expressed as a sum of at most four squares of positive integers, verifying a conjecture first made by Fermat. Even before this proof appeared, the conjecture had been extended by Waring to the effect that each integer can be expressed as a sum of at most 9 cubes, 19 fourth powers, and so on, and, in general, that for each exponent m there exists a minimum number g(m) such that it is possible to express every integer as a sum of at most g(m) mth powers.

The existence of g(m) for all m was proved by Hilbert in 1909. This result instigated extensive further research into obtaining the actual values of g(m). It is an easy task to show that a lower bound for g(m) is provided by the function

h(m) = 2m + [(3/2)m] - 2.

Dickson [9] showed that indeed g(3) = h(3) = 9, and it is now known that g(m) = h(m) for all but a finite number of m. However, this finite set is not known (though it is expected to be empty), and though Chen [6] proved that g(5) = h(5) = 37, for a long time the value of g(4) was unknown, its upper bound gradually being reduced over the years by various researchers. Recently, Thomas [21] brought this bound down, first to 23 and then to 22. For here, Balasubramanian [1], [2] took it down further, to 21 and then to 20. Finally, in 1986, Balasubramanian, Deshouillers and Dress [3] announced their proof that in fact g(4) = h(4) = 19.

Dickson pointed out in his proof of the fact that g(3) = 9 that the only integers which actually require 9 cubes are 23 and 239 (see [10]). Later, Linnik [16] proved that only a finite number need 8 cubes. That is, from some point on, all integers can be expressed as the sum of at most 7 cubes. This idea prompts the definition of G(m) as the minimum number of mth powers required to cover all but a finite set of the positive integers. Thus G(3) £ 7. Clearly, as an infinite number of integers require 3 squares, we also have G(2) = g(2) = 4, and Davenport [7] proved that G(4) = 16. For higher powers, the current best upper bounds were obtained by Vaughan [22] [23] [24] [25], and consist of the following:

G(5) £ 19; G(6) £ 29; G(7) £ 41; G(8) £ 57; G(9) £ 75; G(10) £ 92

It is Vaughan’s belief that the actual values for these are related to a sophisticated function and are:

G(5) = 6; G(6) = 9; G(7) = 8; G(8) = 32; G(9) = 13; G(10) = 12

We now present the results of computer searches conducted by the author in seeking to obtain empirical upper bounds for G(m) from extensive numerical evidence.

Definition: Let fm(n) denote the length of the minimal representation of the positive integer n as a sum of mth powers, so that g(m) = max (fm(n) : n e N).

Definition: Let v(m,k,n) be the counting function for fm, so that v(m,k,n) = |{p e N: p £ n, fm(p) = k}|

and is valid for all k £ g(m).

We then have G(m) = min(k : v(m,k,n) is unbounded).

Definition: Let C(m,k) = {n e N: fm(n) = k}, where, if k £ G(m), C(m,k) is an infinite set, and, if

k > G(m), then c(m,k) = |C(m,k)| = v(m,k,n).

Given the nature of fm, it is obvious that an alternative definition is as follows:

fm(n) = { 1 if n = pm for some p

{ min (fm(n - pm) + 1 : pm < n

since a representation of n in mth powers must include representations of numbers smaller than n by exactly one mth power. This alternative definition provides us with an easily implemented computer algorithm which is extremely fast, especially for m > 4, but at the expense of requiring to store all previous values of fm up to n -1.

As our main interest is in obtaining experimental upper bounds for G(m), we can use this algorithm to accumulate the values of v(m,k,n) as n is pushed as high as possible, noting the trends, hopefully towards convergence. This provides us with the following information:

For m = 3: g(3) = 9, and with a search limit of n £ 1.2x108 we can say with confidence that

c(3,9) = 2 with C(3,9) = {23,239}

c(3,8) = 15 with largest member of C(3,8) being 454

c(3,7) = 121 with largest member of C(3,7) being 8042, and

c(3,6) = 3922 with largest member of C(3,6) being 1290740.

Indeed, Bohman and Froberg [4] use their earlier results, which include periodic samples of fm(n) for much higher values of n, to conjecture that C(3,5) is also finite, approximately 1.12x108, and thus that G(3) = 4. For completeness we present the following table.

n (millions)

v(3,5,n)

10

1736822

20

2909987

30

3902533

40

4785526

50

5592798

60

6341660

70

7043148

80

7706251

90

8336669

100

8938227

110

9514720

120

10069354

 

For m = 5: g(5) = 37, with a search limit n £ 1.2x108 and an accuracy of 10 (i.e. no change between the values of v(m,k,n) and v(m,k,10n) we have:

k

c(5,k)

Running Total

largest member

37

1

1

223

36

2

3

222

35

3

6

221

34

4

10

220

33

5

15

219

32

7

22

466

31

9

31

465

30

10

41

464

29

11

52

463

28

14

66

952

27

22

88

2999

26

38

126

6123

25

64

190

7138

24

107

297

7738

23

173

470

10768

22

259

729

14914

21

368

1097

22625

20

513

1610

30220

19

737

2347

32016

18

1134

3481

87918

17

1925

5406

98604

16

3592

8998

312389

15

7207

16205

470348

14

15980

32185

786159

13

38107

70292

2103306

12

105744

176036

6293040

 

and hence that G(5) £ 11. The running total of c(m,k) is kept as a guarantee of correctness. If we continue the above table to 2x accuracy we also have

11

444523

620559

51033617

 

giving G(5) £ 10. Additionally the table of values

n (million)

v(5,10,n)

10

2017109

20

2771794

30

3153446

40

3362850

50

3480645

60

3556936

70

3603557

80

3634624

90

3656539

100

3671278

110

3682368

120

3691104

 

suggests, though tentatively, that G(5) may in fact be less than 10.

Note that the largest member of C(m,k) is often obtained by adding 1m to the largest member of C(m,k-1), and this is most likely when k is large. Henceforth, we will only list largest members of C(m,k) in the tables when this is not the case.

For m = 6: g(6) = 73, and with a search limit of n £ 1.2x108 and 10x accuracy we have:

k

c(6,k)

Running Total

Largest member

73

1

1

703

72

2

3

 

71

3

6

 

70

4

10

 

69

5

15

 

68

6

21

 

67

7

28

 

66

8

36

 

65

9

45

 

64

10

55

 

 

{there are now 11 consecutive values from k = 63 down to k = 53 with common value

{c(6,k) = 11, the largest member of C(6,k) decrementing. We continue from k=53.

53

11

176

683

52

12

188

3594

51

14

202

 

50

19

221

4796

49

27

248

 

48

37

285

8441

47

49

334

 

46

63

397

 

45

79

476

8697

44

97

573

 

43

116

689

12342

42

138

827

16310

41

162

989

 

40

187

1176

 

39

216

1392

20409

38

251

1643

39938

37

296

1939

 

36

354

2293

86143

35

432

2725

 

34

545

3270

121267

33

720

3990

121329

32

983

4973

123967

31

1350

6323

234692

30

1850

8173

 

29

2526

10699

270068

28

3439

14138

 

27

4665

18803

518804

26

6316

25119

898469

25

8663

33782

1414564

24

12269

46051

1941845

23

18494

64545

3137703

22

31200

95745

6590417

21

60163

155908

9939377

 

and hence that G(6) £ 20. Continuing this table for an accuracy of 2x we have

20

125755

281663

15521582

19

266785

548448

32052907

 

giving G(6) £ 18. Additionally, the table of values

n (million)

v(6,17,n)

v(6,18,n)

10

855404

501592

20

1141618

565006

30

1234934

573028

40

1257406

573451

50

1265147

573473

60

1269657

573481

70

1273296

573484

80

1275285

573487

90

1276916

573488

100

1277629

573488

110

1278119

573488

120

1278359

573488

 

strongly suggests that G(6) £ 17, and possibly lower still.

For the above considered values of m, it is unlikely that G(m) is much less than the bounds given. However, the larger m gets, the fewer the powers that are available for consideration for any given n. In particular, with a search limit for n £ 1.2x108, there are only fourteen 7th powers, ten 8th powers and eight 9th powers. Results obtained, therefore, must be considered as limited. We have, with a search limit of n £ 1.2x108 and an accuracy of 10x, that

G(7) £ 33; G(8) £ 60; G(9) £ 128

We are thus encouraged to look for an alternative algorithm which may be used to extend the search limit considerably, perhaps by sacrificing speed in favour of memory requirements.

Consider that, as has been mentioned, the minimal representation for n is usually directly obtained from that of n -1 by adding 1m, with increasing likelihood as m increases, and in this case we have fm(n) = fm(n -1) + 1. We can use this fact to our advantage as follows, where it is assumed that we already know that n is not an mth power.

Given a particular n, let us assume that we have stored every previous value of fm(k) where

k < n and such that fm(k) £ fm(k -1), i.e. the exceptional cases, there being r of these, where r is "considerably" less than n. For convenience we refer to the set of exceptional cases as the non-jump set Rm, and we let rm(n) be the number of k e Rm such that k < n.

Still using the alternative definition of fm(n), we require to calculate fm(n-pm) for each p such that pm < n. We do this by locating the largest k e Rm such that k £ n-pm, in which case we have

fm(n-pm) = fm(k) + [(n-pm) - k],

i.e. fm(k) plus the "jump", i.e. the number of mth powers of 1, between k and n-pm. Again, if at any time we have fm(n) £ 2, we can assume equality.

The most obvious way of locating the correct value of k between 1 and rm(n) is by a linear search. However, this results in a prohibitive execution time for the amended algorithm for any reasonably large limit, and in practice, as the stored sequence is monotonically increasing, it is more appropriate to use a binary search technique. With this in place, the amended algorithm will execute roughly 100 times slower than the original to the same limit, thus what once took minutes will now take hours. However, the benefits will become apparent shortly.

The same computer which allowed storage of 1.2x108 values of fm can store 4.5x107 members of Rm, noting that we must now store both k and fm(k). Unfortunately, for small m, rm(n) is sufficiently large in comparison to n that we cannot improve on the original algorithm, and significant benefits are achieved only when m is large enough that non-jumps are rare. This occurs for m > 6. A guide to the performance of the amended algorithm is as follows.

For m = 7,

n = 106,

r7(n) = 85917

 

n = 107,

r7(n) = 1659610

 

n = 108,

r7(n) = 28074245

 

n = 1.5x108,

r7(n) = 44278091

For m = 8,

n = 106,

r8(n) = 41901

 

n = 107,

r8(n) = 699420

 

n = 2x107,

r8(n) = 1700394

 

n = 2.5x107,

r8(n) = 2289191

 

n = 108,

r8(n) = 14729653

 

n = 2x108,

r8(n) = 33643957

 

n = 2.5x108,

r8(n) = 43235625

For m = 9,

n = 106,

r9(n) = 8846

 

n =107,

r9(n) = 505181

 

n =2x107,

r9(n) =1168768

 

n =3x107,

r9(n) =1865445

 

n =4x107,

r9(n) =2589065

 

n =108,

r9(n) = 6366874

 

n =2x108,

r9(n) =14063176

 

n =3x108,

r9(n) =23362855

 

n =4x108,

r9(n) =34090513

 

n =4.5x108,

r9(n) = 39647090

 

For m = 7, G(7) = 143, and with a search limit of n £ 1.5x108 and 10x accuracy we have:

k

c(7,k)

Running Total

Largest member

143

1

1

2175

142

2

3

 

141

3

6

 

140

4

10

 

139

5

15

 

138

6

21

 

137

7

28

 

136

8

36

 

135

9

45

 

134

10

55

 

133

12

67

4351

132

14

81

 

131

16

97

 

130

18

115

 

129

20

135

 

128

22

157

 

127

24

181

 

126

25

206

 

125

26

232

 

124

27

259

 

123

29

288

6527

122

31

319

 

121

33

352

 

120

35

387

 

119

37

424

 

118

39

463

 

117

41

504

 

116

42

546

 

115

43

589

 

114

44

633

 

113

46

679

8703

112

48

727

 

111

50

777

 

110

52

829

 

109

54

883

 

108

56

939

 

107

58

997

 

106

59

1056

 

105

61

1117

15253

104

64

1181

 

103

68

1249

 

102

72

1321

 

101

76

1397

 

100

80

1477

 

99

84

1561

 

98

88

1649

 

97

94

1743

16288

96

100

1843

 

95

107

1950

 

94

114

2064

 

93

121

2185

 

92

128

2313

 

91

135

2448

 

90

142

2590

 

89

149

2739

16299

88

155

2894

 

87

160

3054

 

86

163

3217

 

85

165

3382

 

84

166

3548

 

83

167

3715

 

82

168

3883

 

81

169

4052

 

80

171

4223

31619

79

174

4397

 

78

177

4574

 

77

182

4756

 

76

189

4945

 

75

198

5143

 

74

210

5353

33791

73

225

5578

 

72

242

5820

 

71

260

6080

 

70

278

6358

 

69

296

6654

 

68

313

6967

 

67

330

7297

80771

66

349

7646

 

65

371

8017

 

64

398

8415

80779

63

432

8847

 

62

473

9320

 

61

520

9840

 

60

577

10417

84604

59

645

11062

 

58

730

11792

111915

57

836

12628

158888

56

965

13593

175270

55

1114

14707

 

54

1287

15994

264311

53

1492

17486

312951

52

1742

19228

345138

51

2054

21282

 

50

2438

23720

703195

49

2917

26637

 

48

3538

30175

891634

47

4371

34546

1010822

46

5486

40032

1171822

45

6949

46981

1444817

44

8842

55823

1445197

43

11272

67095

1646753

42

14326

81421

2461307

41

18056

99477

2770216

40

22578

122055

3035495

39

28183

150238

4057060

38

35301

185539

4866984

37

44602

230141

6142323

36

57142

287283

6977755

35

74397

361680

8718067

34

97934

459614

9930770

 

and hence that G(7) £ 33. If we are willing to allow an accuracy of just 2, then this list continues:

33

129608

589222

18641617

32

171924

761146

24137560

31

228757

989903

28640976

30

306877

1296780

34991627

29

421193

1717973

39958290

28

601523

2319496

64195986

27

894459

3213955

70390062

 

Additionally, the table of values

n (mill)

v(7,24,n)

v(7,25,n)

v(7,26,n)

10

784289

740077

667469

20

1614900

1337905

1042058

30

2237846

1724807

1245904

40

2694624

1956901

1340229

50

2865896

2007511

1350591

60

2983588

2031365

1353196

70

3050010

2042378

1354181

80

3078230

2045129

1354300

90

3090993

2045978

1354320

100

3102156

2046631

1354335

110

3107024

2046803

1354336

120

3108875

2046842

1354337

130

3110439

2046868

1354337

140

3111535

2046885

1354337

150

3112045

2046888

1354337

 

suggests that G(7) £ 25 and probably much lower.

For m = 8: g(8) = 279, and with a search limit of n £ 2.5x108 and 10x accuracy we have

k

c(8,k)

Running Total

Largest member

279

1

1

6399

278

2

3

 

277

3

6

 

276

4

10

 

275

5

15

 

274

6

21

 

273

7

28

 

272

8

36

 

271

9

45

 

270

10

55

 

269

11

66

 

268

12

78

 

267

13

91

 

266

14

105

 

265

15

120

 

264

16

136

 

263

17

153

 

262

18

171

 

261

19

190

 

260

20

210

 

259

21

231

 

258

22

253

 

257

23

276

 

256

24

300

 

 

{there are now 45 consecutive values from k = 255 down to k = 211 with common value

{c(8,k) = 25, the largest member of C(8,k) decrementing. We continue from k = 211

211

25

1425

6331

210

26

1451

12960

209

27

1478

 

208

28

1506

 

207

29

1535

 

206

30

1565

 

205

31

1596

 

204

32

1628

 

203

33

1661

 

202

34

1695

 

201

35

1730

 

200

36

1766

 

199

37

1803

 

198

38

1841

 

197

39

1880

 

196

40

1920

 

195

41

1961

 

194

42

2003

 

193

43

2046

 

192

44

2090

 

191

45

2135

 

190

46

2181

 

189

47

2228

 

188

48

2276

 

187

49

2325

 

186

50

2375

 

 

{there are now 33 consecutive values from k = 185 down to k = 153 with common value

{c(8,k) = 51, the largest member of C(8,k) decrementing. We continue from k = 153.

153

51

4058

12903

152

52

4110

65382

151

54

4164

 

150

57

4221

 

149

62

4283

130984

148

70

4353

 

147

81

4434

 

146

96

4530

 

145

115

4645

 

144

136

4781

 

143

159

4940

 

142

184

5124

 

141

210

5334

 

140

236

5570

 

139

262

5832

 

138

288

6120

 

137

315

6435

196507

136

343

6778

 

135

372

7150

 

134

403

7553

 

133

436

7989

 

132

471

8460

 

131

508

8968

 

130

547

9515

 

129

587

10102

 

128

629

10731

 

127

673

11404

 

126

718

12122

 

125

764

12886

 

124

811

13697

 

123

857

14554

 

122

901

15455

 

121

943

16398

 

120

982

17380

 

119

1019

18398

393094

118

1056

19455

 

117

1094

20549

 

116

1133

21682

 

115

1175

22857

 

114

1222

24079

 

113

1275

25354

 

112

1333

26687

 

111

1397

28084

521606

110

1469

29553

 

109

1549

31102

 

108

1636

32738

 

107

1730

34468

 

106

1831

36299

 

105

1938

38237

 

104

2051

40288

 

103

2170

42458

 

102

2297

44755

587132

101

2433

47188

 

100

2576

49764

 

99

2725

52489

 

98

2881

55370

 

97

3043

58413

 

96

3210

61623

 

95

3384

65007

589684

94

3568

68575

 

93

3762

72337

 

92

3967

76304

 

91

4183

80487

783750

90

4410

84897

 

89

4647

89544

849254

88

4895

94439

 

87

5153

99592

 

86

5425

105017

976465

85

5716

110733

1564999

84

6027

116760

 

83

6359

123119

 

82

6716

129835

 

81

7102

136937

1565000

80

7525

144462

1633127

79

8000

152462

2069605

78

8544

161006

 

77

9175

170181

2459462

76

9909

180090

3113536

75

10766

190856

 

74

11769

202625

3632168

73

12938

215563

5180712

72

14297

229860

5311781

71

15890

245750

 

70

17786

263536

 

69

20089

283625

5317318

68

22922

306547

5645069

67

26388

332935

5953609

66

30572

363507

6210907

65

35532

399039

 

64

41355

440394

7324680

63

48140

488534

9004812

62

56000

544534

10957613

61

65022

609556

10990412

60

75264

684820

12440111

59

86838

771658

16885770

58

99966

871624

 

57

114983

986607

17200330

56

132488

1119095

18235496

 

and hence that G(8) £ 55. If we are willing to allow an accuracy of just 2, then this list continues:

55

153383

1272478

33590122

54

178904

1451382

39276776

53

210644

1662026

44485416

52

250573

1912599

 

51

301235

2213834

54706088

50

366173

2580007

95532007

 

Additionally, the table of values

n (mill)

v(4,47,n)

v(4,48,n)

v(8,49,n)

25

588499

502301

424106

50

695991

557654

449618

75

708932

560883

450231

100

716877

562556

450459

125

718158

562714

450469

150

718470

562741

450470

175

718612

562748

450470

200

718746

562754

450470

225

718829

562754

450470

250

718832

562754

450470

 

suggests that G(8) £ 48 and probably much lower.

 For m = 9: g(9) = 548, and with a search limit of n £ 4.5x108 and 10x accuracy we have

k

c(9,k)

Running Total

Largest member

548

1

1

19455

547

2

3

 

546

3

6

 

545

4

10

 

544

5

15

 

543

6

21

 

542

7

28

 

541

8

36

 

540

9

45

 

539

10

55

 

538

11

66

 

537

12

78

 

536

13

91

 

535

14

105

 

534

15

120

 

533

16

136

 

532

17

153

 

531

18

171

 

530

19

190

 

529

20

210

 

528

21

231

 

527

22

253

 

526

23

276

 

525

24

300

 

524

25

325

 

523

26

351

 

522

27

378

 

521

28

406

 

520

29

435

 

519

30

465

 

518

31

496

 

517

32

528

 

516

33

561

 

515

34

595

 

514

35

630

 

513

36

666

 

512

37

703

 

 

{there are now 178 consecutive values from k = 511 down to k = 334 with common value

{c(9,k) = 38, the largest member of C(9,k) decrementing. We continue from k = 334.

334

38

7467

19241

333

39

7506

255424

332

41

7547

 

331

44

7591

 

330

48

7639

 

329

53

7692

 

328

59

7751

 

327

66

7817

 

326

74

7891

 

325

83

7974

 

324

93

8067

 

323

104

8171

 

322

116

8287

 

321

128

8415

 

320

140

8555

 

319

152

8707

 

318

164

8871

 

317

176

9047

 

316

188

9235

 

315

200

9435

 

314

213

9468

275334

313

227

9875

 

312

242

10117

 

311

258

10375

 

310

275

10650

 

309

294

10944

281478

308

315

11259

 

307

337

11596

 

306

360

11956

 

305

384

12340

 

304

409

12749

 

303

435

13184

 

302

462

13646

 

301

489

14135

 

300

516

14651

 

299

543

15194

 

298

570

15764

 

297

596

16360

 

296

621

16981

 

295

645

17626

 

294

668

18294

 

293

690

18984

 

292

711

19695

 

291

731

20426

 

290

750

21176

 

289

768

21944

 

288

785

22729

 

287

801

23530

 

286

816

24346

 

285

830

25176

 

284

843

26019

 

283

856

26875

 

282

869

27744

 

281

882

28626

 

280

895

29521

 

279

908

30429

 

278

921

31350

 

277

934

32284

 

276

947

33231

 

275

959

34190

 

274

970

35160

 

273

980

36140

 

272

989

37129

 

271

997

38126

 

270

1004

39130

 

269

1010

40140

 

268

1015

41155

 

267

1019

42174

 

266

1022

43196

 

265

1024

44220

 

 

{there are now 44 consecutive values from k = 264 down to k = 221 with common value

{c(9k) = 1025, the largest member of C(9,k) decrementing. We continue from k = 221.

221

1025

89320

281390

220

1026

90346

511424

219

1028

91374

 

218

1031

92405

 

217

1035

93440

 

216

1040

94480

 

215

1047

95527

517568

214

1056

96583

 

213

1067

97650

 

212

1080

98730

 

211

1095

99825

 

210

1112

100937

 

209

1131

102068

 

208

1152

103220

543622

207

1176

104396

1035697

206

1203

105599

 

205

1233

106832

 

204

1266

108098

 

203

1300

109398

 

202

1337

110735

1041841

201

1379

112114

 

200

1426

113540

 

199

1478

115018

 

198

1535

116553

 

197

1597

118150

 

196

1664

119814

 

195

1737

121551

1067895

194

1818

123369

1559970

193

1907

125276

 

192

2003

127279

 

191

2107

129386

 

190

2218

131604

 

189

2336

133940

1566114

188

2461

136401

 

187

2592

138993

 

186

2729

141722

 

185

2872

144594

 

184

3021

147615

 

183

3176

150791

 

182

3337

154128

1592168

181

3505

157633

2084243

180

3680

161313

 

179

3861

165174

 

178

4048

169222

 

177

4241

173463

2097542

176

4442

177905

2104695

175

4654

182559

2111848

174

4879

187438

 

173

5119

192557

 

172

5375

197932

 

171

5647

203579

 

170

5935

209514

 

169

6239

215753

2116441

168

6559

222312

 

167

6894

229206

 

166

7243

236449

 

165

7606

244055

 

164

7982

252037

 

163

8368

260405

 

162

8760

269165

 

161

9153

278318

 

160

9542

287860

 

159

9923

297783

4050648

158

10295

308078

4057801

157

10661

318739

4064954

156

11027

329766

 

155

11400

341166

5996614

154

11787

352953

 

153

12195

365148

 

152

12631

377779

 

151

13101

390880

5996629

150

13609

404489

 

149

14160

418649

 

148

14761

433410

 

147

15420

448830

7851320

146

16145

464975

 

145

16943

481918

 

144

17818

499736

 

143

18772

518508

7942567

142

19804

538312

 

141

20914

559226

 

140

22105

581331

9895688

139

23384

604715

 

138

24764

629479

 

137

26261

655740

9928910

136

27896

683636

11729682

135

29691

713327

 

134

31663

744990

11882026

133

33824

778814

 

132

36179

814993

 

131

38726

853719

 

130

41463

895182

 

129

44380

939562

 

128

47467

987029

13734690

127

50708

1037737

13833099

126

54081

1091818

 

125

57566

1149384

19685315

124

61144

1210528

 

123

64796

1275324

 

122

68522

1343846

 

121

72328

1416174

 

120

76234

1492408

20065576

119

80264

1572672

 

118

84441

1657113

20262425

117

88784

1745897

 

116

93312

1839209

 

115

98035

1937244

26120776

114

102970

2040214

28072877

113

108129

2148343

 

112

113516

2261859

 

111

119123

2380982

 

110

124941

2505923

28073895

109

130964

2636887

 

108

137173

2774060

39792637

107

143558

2917618

39910754

106

150123

3067741

 

105

156884

3224625

 

104

163857

3388482

 

103

171045

3559527

40172898

102

178451

3737978

40291015

101

186100

3924078

41607981

100

194036

4118114

 

99

202311

4320425

 

 

and hence that G(9) £ 98. If we are willing to allow an accuracy of just 2, then this list continues:

98

210991

4531416

49590969

97

220192

4751608

49709086

96

230092

4981700

59276841

95

240936

5222636

63183088

94

253042

5475678

 

93

266764

5742442

 

92

282452

6024894

76238446

91

300413

6325307

92302806

90

320901

6646208

 

89

344177

6990385

114579879

88

370518

7360903

128867236

87

400257

7761160

 

86

433804

8194964

 

85

471641

8666605

132614091

84

514284

9180889

 

83

562211

9743100

209571889

82

615894

10358994

 

81

675879

11034873

 

80

742876

11777749

 

79

817811

12595560

211522454

78

901904

13497464

212203715

 

Additionally, the table of values

n (mill)

v(9,70,n)

v(9,71,n)

v(9,72,n)

v(9,73,n)

v(9,74,n)

v(9,75,n)

v(9,76,n)

v(9,77,n)

50

989743

965219

937540

906899

873570

837901

800307

761245

100

1647484

1539089

1432428

1328565

1228439

1132769

1042097

956795

150

1972664

1795299

1629539

1476407

1336360

1209297

1094682

991719

200

2083054

1873887

1683648

1512302

1359207

1223172

1102669

996027

250

2106955

1888638

1692605

1517664

1362366

1225005

1103729

996639

300

2111322

1890538

1693357

1517942

1362466

1225037

1103737

996640

350

2112425

1890930

1693471

1517967

1362468

1225037

1103737

996640

400

2112461

1890934

1693471

1517967

1362468

1225037

1103737

996640

450

2112461

1890934

1693471

1517967

1362468

1225037

1103737

996640

suggests that G(9) £ 69. Examination of values for k even lower shows a similar trend, though the deceleration effect takes longer to manifest, and it is quite probable that G(9) may be less than 60. The current experimental limit of 4.5x108 is therefore good, but not quite good enough. A limit of 5x108 may well be possible given current resources. Ideally a limit of 2x109 may provide the real answers.

For m = 10, the weight of data to be processed is considerable. However, with available resources we can reach a limit on n of 5x108. This suggests that G(10) £ 209 to 10x accuracy and G(10) £ 153 to 2x accuracy. As with the m = 9 case, the data indicates that G(10) is in fact much lower than this, but the search limit would have to be pushed much higher before evidence of this is convincing.

 

URL : www.glasgowg43.freeserve.co.uk/chapter7.htm